Abstract

G-rich telomeric DNA plays a major role in the stabilization of chromosomes and can fold into a plethora of different G-quadruplex structures in the presence of mono- and divalent cations. The reversed human telomeric DNA sequence (5′-(GGG ATT)4; RevHumTel) was previously shown to have interesting properties that can be exploited for chemical sensing and as a chemical switch in DNA nanotechnology. Here, we analyze the specific G-quadruplex structures formed by RevHumTel in the presence of K+, Na+, Mg2+ and Ca2+ cations using circular dichroism spectroscopy (CDS) and Förster resonance energy transfer (FRET) based on fluorescence lifetimes. CDS is able to reveal strand and loop orientations, whereas FRET gives information about the distances between the 5′-end and the 3′-end, and also, the number of G-quadruplex species formed. Based on this combined information we derived specific G-quadruplex structures formed from RevHumTel, i.e., a chair-type and a hybrid-type G-quadruplex structure formed in presence of K+, whereas Na+ induces the formation of up to three different G-quadruplexes (a basket-type, a propeller-type and a hybrid-type structure). In the presence of Mg2+ and Ca2+ two different parallel G-quadruplexes are formed (one of which is a propeller-type structure). This study will support the fundamental understanding of the G-quadruplex formation in different environments and a rational design of G-quadruplex-based applications in sensing and nanotechnology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call