Abstract

Abstract It is established that soil hydrophobicity reduces soil infiltration rates, and enhances runoff flow and soil erosion. Water repellency has been studied with special interest in coniferous and eucalyptus forests, particularly after burning, but the number of studies concerning Mediterranean heathlands is still very low. In this paper, we study the occurrence and persistence of water repellency in soil samples collected under different plant species susceptible to induce soil hydrophobicity ( Erica arborea , Erica australis , Calluna vulgaris , Quercus lusitanica and Rhododendron ponticum ) in a natural protected area in southern Spain. Great attention has been paid to the relationships between soil water repellency and environmental factors as organic matter content and soil acidity. The largest hydrophobicity was measured in soil samples collected under E. australis , E. arborea and C. vulgaris . For these species, the organic matter content and pH showed positive and negative correlations with the persistence of water repellency, respectively. The hydrophobicity originated by humic substances in the soil seems to be the only explanation for slight soil water repellency under Q. lusitanica or R. ponticum . The patchy patterns of occurrence and persistence of soil water repellency is governed by the spatial distribution of the studied species and modulated by other factors. Soil surface water repellent layers reduce the infiltration rates and limit the water storage capacity. However, the macropore flow can be enhanced on non-repellent layers, cracks or roots such us the wetting's front shown. The vegetation effects on soil hydrology should be considered for afforestation works and flooding control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call