Abstract

A comparative study on the drug release capacity of four water swellable polymeric systems was carried out by differential scanning calorimetry (DSC). The polymeric systems chosen were α, β-polyaspartahydrazide (PAHy) crosslinked by glutaraldehyde (GLU) (PAHy-GLU) or by ethyleneglycoldiglycidylether (EGDGE), (PAHy-EGDGE), polyvinylalcohol (PVA) crosslinked by glutaraldehyde (PVA-GLU) and α, β-poly( N-hydroxyethyl)- dl-aspartamide (PHEA) by gamma irradiation (PHEA- γ matrices). The degree of crosslinking for PAHy-GLU, PAHy-EGDGE and PVA-GLU samples was about 0.4 and 0.8. These hydrogels were characterized as free of drugs and were loaded with diflunisal (DFN) (≈2.5% w/w). Diflunisal, a non-steroidal anti-inflammatory drug, has been chosen as a model drug to be incorporated into polymeric matrices to follow the release processes of a drug from these hydrogels to a model membrane made by unilamellar vesicles of dipalmitoylphosphatidylcholine (DPPC). Differential scanning calorimetry appears to be a suitable technique to follow the transfer kinetics of the drug from the controlled release system to the biomembrane model. The drug releases from all the considered polymeric hydrogels, were compared with the release observed from the drug solid form by examining the effects on the thermotropic behaviour of DPPC unilamellar vesicles. The release kinetics of the drug from hydrogels were followed at 25, 37 and 50°C to evidence the influence of temperature on the drug release and on the successive transfer to biological membrane model. Particularly, it appears evident that the total amount of drug transferred and the release rate are affected by the polymer crosslinking degree (it increases with crosslinking decrease) as well as by the nature of crosslinking agent. In fact, the drug release profiles from PAHy-GLU samples are more differentiated than those from PAHy-EGDGE. The effect of parameters correlating with the properties of starting polymer, such as water-affinity, crystallinity, glass-to-rubber transition temperature and affinity towards drug molecules, has been also evaluated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call