Abstract

Iron-oxidizing bacteria played an important role in the treatment of Sb-containing wastewater. In this study, effect of different iron sources on Sb(III) removal ability by isolated iron-oxidizing bacteria (named as IOB-L) was conducted systemically in batch experiment. Moreover, ferrous lactate and zero-valent iron were chosen as iron sources for IOB-L. The results showed that after inoculation of 2% volume of IOB-L, Sb(III) concentration in water decreased from initial 18 mg/L to 4.1 mg/L at optimal pH of 7.0. There was no reaction between Sb(III) and ferrous lactate, whereas corrosion product of iron can adsorb a certain amount of Sb. When active IOB-L cultivated in ferrous lactate, a better removal rate of Sb(III) can be reached with a longer stagnate phase for bacteria. However, Sb(III) removal ability of IOB-L using zero-valent iron as iron source was lower. SEM-EDS, FTIR, and XPS analysis further indicated that ferrous lactate was oxidized by IOB-L and precipitated as biogenic iron oxides which had strong adsorption ability towards Sb(III), whereas zero-valent iron was not a good iron source.

Highlights

  • Antimony (Sb) is classed as metalloids or semimetals as arsenic

  • A strain of isolated heterotrophic iron-oxidizing bacteria, which belonged to Klebsiella sp., was used for water treatment

  • The results showed that iron-oxidizing bacteria (IOB)-L biomass had a little adsorption ability towards Sb(III)

Read more

Summary

Introduction

Antimony (Sb) is classed as metalloids or semimetals as arsenic. Sb and its compounds have been widely used in catalyst, flame retardant, and semi-conductor materials industries (Rakshit et al 2011). Treatment of Sb-containing wastewater was important for the water environment

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.