Abstract

Due to the actual situation of spacecraft surface’ charging, such as convex corners, weld line, whalebone and a multiple-interfaces with different materials, all these are main factors leading to uneven charging of spacecraft surface, even creating gradient potential. If the charging spacecraft surface is impacted by debris or micrometeor, discharge effect induced by impacting will pose a serious threat to spacecraft in orbit. So realizing spacecraft charging surface with different potential differences and grasping discharge characteristics are a decisive importance at the different experimental conditions in laboratory. To simulate the spacecraft surface with a gradient potential in laboratory, spacecraft surface is split into different parts, which different gaps reserved in 2 adjacent surface is added resistance to create different potential surfaces, and the high potential surface as a impact target in the split targets. Charging circuit system realizing different gradient potential and discharge test system are built by ourselves, combining with two-stage light gas gun loading system, six sets of experiments have been performed about hypervelocity impact on 2A12 aluminum split targets with gradient potentials. In the experiments, gaps of 2A12 aluminum target are the same among different parts in every experiments, the gaps of the split targets are 2mm, 3mm, 5mm, 7mm and 10mm in the experiments, respectively. And the applied voltage is 300V in all the experiments and high-potential 2A12 aluminum plate as the impact target. The experiments have been performed at the impact velocity of about 3km/s and the incidence angles of 60o and 90o (between projectile flying trajectory and target plane), respectively. Voltage probe and current probes are used for acquiring discharge voltages and currents during the process of the impact. The experimental results showed that the discharge induced by impact plasma were generated among high and low-potential target by forming a plasma discharge channel. With the increasing of the gaps among the high and low-potential targets, the peak values of the discharge current decreased first then increased. When the gaps of split targets reached a certain value, the peak values of the discharge current decreased again. Meanwhile, the gaps among high and low-potential targets was 5mm, the peak value of the discharge current was the smallest. With the increasing of the gaps among the split targets, a primary discharge duration also increased. However, when the gaps among the split targets were greater than 5mm, increasing trend of discharge duration would slow down. When the gaps among the split targets were greater than 7mm, there was a secondary discharge phenomenon, and the physical explanations were given about the influence of different gaps among the split targets on the discharge effects created by hypervelocity impact.

Highlights

  • With the increasing of human-being space activities and the deteriorating of the natural space environment in space, space environment has been deteriorated seriously,[1,2,3] all these will pose a great threat to spacecrafts in Sun Synchronous Orbit (SSO), Polar Orbit (PO) and Geosynchronous Orbit (GEO)

  • The method of split target is adopted to simulate the discharge characteristics of spacecraft surface with a gradient potential in the laboratory, experiments have been carried out about plasma discharge induced by hypervelocity impact on 2A12 aluminum split targets with gradient potential, which has been conducted at the conditions of near collision speed, the same projectile incidence angles and different gaps among the split targets by using two-stage light gas gun loading system and discharge testing system

  • Spacecraft surface with gradient potential, we have adopted the method of split spacecraft surface into many parts with different spacings, and adding resistors on the different split surfaces to create different potential surfaces

Read more

Summary

Introduction

With the increasing of human-being space activities and the deteriorating of the natural space environment in space, space environment has been deteriorated seriously,[1,2,3] all these will pose a great threat to spacecrafts in Sun Synchronous Orbit (SSO), Polar Orbit (PO) and Geosynchronous Orbit (GEO). The method of split target is adopted to simulate the discharge characteristics of spacecraft surface with a gradient potential in the laboratory, experiments have been carried out about plasma discharge induced by hypervelocity impact on 2A12 aluminum split targets with gradient potential, which has been conducted at the conditions of near collision speed, the same projectile incidence angles and different gaps among the split targets by using two-stage light gas gun loading system and discharge testing system. The experimental results have disclosed the influence of different split targets’ gaps to discharge effects

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call