Abstract

Objectives: Endodontic irrigants are critical in root canal treatments, but their influence on the coronal dentin bond strength of composite restorations is a key concern for a favorable clinical prognosis. The present in vitro study explores the effect of different endodontic irrigants on shear bond strength of composite resin. Material and Methods: Fifty permanent human mandibular molars were sectioned to expose coronal dentin and divided into five groups. Each group received a specific irrigant treatment before composite resin bonding. Shear bond strength was examined using Instron Universal testing machine, and statistical analysis was conducted using post hoc Tukey’s test and analysis of variance. Results: Group A (Saline) showed a mean shear bond strength of 18.5 Megapascal (MPa). Group B [sodium hypochlorite (NaOCl)] had mean shear bond strength of 15.2 MPa. Group C [Chlorhexidine (CHX) Gluconate] exhibited mean shear bond strength of 20.3 MPa. Group D ethylenediaminetetraacetic acid (EDTA) recorded mean shear bond strength of 14.8 MPa, while Group E [citric acid (CA)] had the highest mean shear bond strength at 22.7 MPa. Conclusion: The type of endodontic irrigant used significantly affected the shear bond strength of composite restorations to coronal dentin. CHX gluconate and CA displayed superior bond strengths compared to Saline, NaOCl, and EDTA. This underscores the importance of irrigant selection in achieving successful composite restorations in endodontically treated teeth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.