Abstract

The complementarity of energy resources used in hybrid power generation can result in optimization of power capacity and reservation capabilities. This article is dedicated to the study of hybrid hydro PV systems. The goal is to establish the relationship between system performance and complementarity of energy resources. The study was carried out with computer simulations based on a method that uses ideal functions developed to describe the energy resources and determines a limit of performance. The results confirm expectations that performance, as measured by the total time of failure to meet demand, will be better as energy resources are complementary. Charts relating energy complementarity with failures are presented. The subsequent research work shall proceed to at least two different phases. In the first one, the method exposed in the present work shall be applied to real data and compared to the operation of existing hybrid plants. In the second phase, results shall be confronted with design parameters of hydro PV plants based on complementary resources. A next stage would be the enlargement of the method applied in this work for systems based on other energy resources, such as wind energy and ocean wave energy.

Highlights

  • Hybrid systems are an alternative technically and economically feasible for power generation in remote sites and in places where the power supply quality is compromised

  • A stage would be the enlargement of the method applied in this work for systems based on other energy resources, such as wind energy and ocean wave energy

  • This article applies the method proposed by the author [3] to relate the performance of hybrid systems with the energetic complementarity of energy resources, complementing the results presented for time complementarity

Read more

Summary

Introduction

Hybrid systems are an alternative technically and economically feasible for power generation in remote sites and in places where the power supply quality is compromised. Research on the performance of hybrid systems has enabled the use of energy resources that were not feasible in non-hybrids. The combination of dynamic characteristics of different energy resources has allowed the overcoming of difficulties in meeting customer demand profiles. The combination of hydroelectric and photovoltaic sources of energy in a generation system may reduce the cost of energy available in plants implemented in low hydroelectric potential sites for which main system interconnection costs prove prohibitive. Research on hybrid hydro PV plants can evaluate the use of water reservoirs and battery banks as alternatives for energy storage within a system and can evaluate the advantages of generation from complementary energy sources

Objectives
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.