Abstract

The last decade saw the emergence of various theoretical analysis and developments of ADS (Accelerator Driving System). Different transport codes, nuclear models and nuclear cross sections have been used to predict and estimate the properties of ADS. The energy of the proton beam is supposed to range between 1 and 1.5 GeV, but some analyses suggest higher energy - up to 10 GeV. The recent papers examine the influence of the nuclear models on neutron induced reactions (n,f), (n,g), (n,xn), (n,el.) and (n,inel.). The experimental set-ups and the presumable ADS constructions consist of thousands of segments and details for example project Myrrha, Belgum [1]. The calculation of the above reactions depends on the neutron spectrum in each segment. There is a considerable difference in the size of these segments in ADS, which makes the estimation of the influence of the nuclear models and the cross sections on the integral number of neutron induced reactions more difficult. This article considers the influence of different cross section data tables on neutron induced reactions in 238U or 232Th targets. One nuclear model describing the high energy part of the nuclear interaction and various cross section data tagble (ENDF, ENDL, TENDL2014 and etc.) are used. All particles generated in the nuclear interaction process deposit their energy in the target volume. MCNP 6.1 transport code was used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.