Abstract

The long afterglow luminescent materials Sr3Al2O6: Eu2+, Re3+ ( Re= La, Ce, Pr, Nd, Sm, Gd, Dy, Er) were synthesized via solid-state reaction. X-ray diffraction and fluorescence spectrophotometer were employed to characterize the phosphors. The excitation spectra were all well simulated by eight Gaussian curves, indicating that they originated from the 4f7 (8S7/2) – 4f65d (8HJ) transitions of Eu2+ ions. The excitation spectra intensity of Sr3Al2O6: Eu2+, Sm3+ is much stronger than the others, which indicates that there is a more efficient energy transfers from Sm3+ to Eu2+. The simulated results of the emission spectra showed that they generated from the Eu2+ ions in the Sr2+ sites of SrO6 and SrO7 polyhedral, which indicated that the Eu2+ ions were apt to occupy low-coordination crystallographic site. The proposed explanation for excitation spectra and emission spectra property were also discussed

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call