Abstract
BackgroundWe evaluated the effect of insulin stimulation and dietary changes on myocardial, skeletal muscle and brain [18F]-fluorodeoxyglucose (FDG) kinetics and uptake in vivo in intact mice.MethodsMice were anesthetized with isoflurane and imaged under different conditions: non-fasted (n = 7; "controls"), non-fasted with insulin (2 IU/kg body weight) injected subcutaneously immediately prior to FDG (n = 6), fasted (n = 5), and fasted with insulin injection (n = 5). A 60-min small-animal PET with serial blood sampling and kinetic modeling was performed.ResultsWe found comparable FDG standardized uptake values (SUVs) in myocardium in the non-fasted controls and non-fasted-insulin injected group (SUV 45-60 min, 9.58 ± 1.62 vs. 9.98 ± 2.44; p = 0.74), a lower myocardial SUV was noted in the fasted group (3.48 ± 1.73; p < 0.001). In contrast, the FDG uptake rate constant (Ki) for myocardium increased significantly by 47% in non-fasted mice by insulin (13.4 ± 3.9 ml/min/100 g vs. 19.8 ± 3.3 ml/min/100 g; p = 0.030); in fasted mice, a lower myocardial Ki as compared to controls was observed (3.3 ± 1.9 ml/min/100 g; p < 0.001). Skeletal muscle SUVs and Ki values were increased by insulin independent of dietary state, whereas in the brain, those parameters were not influenced by fasting or administration of insulin. Fasting led to a reduction in glucose metabolic rate in the myocardium (19.41 ± 5.39 vs. 3.26 ± 1.97 mg/min/100 g; p < 0.001), the skeletal muscle (1.06 ± 0.34 vs. 0.34 ± 0.08 mg/min/100 g; p = 0.001) but not the brain (3.21 ± 0.53 vs. 2.85 ± 0.25 mg/min/100 g; p = 0.19).ConclusionsChanges in organ SUVs, uptake rate constants and metabolic rates induced by fasting and insulin administration as observed in intact mice by small-animal PET imaging are consistent with those observed in isolated heart/muscle preparations and, more importantly, in vivo studies in larger animals and in humans. When assessing the effect of insulin on the myocardial glucose metabolism of non-fasted mice, it is not sufficient to just calculate the SUV - dynamic imaging with kinetic modeling is necessary.
Highlights
We evaluated the effect of insulin stimulation and dietary changes on myocardial, skeletal muscle and brain [18F]-fluorodeoxyglucose (FDG) kinetics and uptake in vivo in intact mice
Earlier studies from our laboratory have already demonstrated the feasibility of determining the radiotracer arterial input function and the tissue kinetics in myocardium, skeletal muscle, and brain in intact mice [7,8,9,10]
Knowledge of the extent of these changes will assist in planning future experiments for assessing glucose metabolism to help decide if kinetic modeling is necessary or which metabolic state would be the most suitable to answer the scientific question
Summary
We evaluated the effect of insulin stimulation and dietary changes on myocardial, skeletal muscle and brain [18F]-fluorodeoxyglucose (FDG) kinetics and uptake in vivo in intact mice. The development of high-spatial-resolution small-animal PET has opened a new field for translational research. With these dedicated devices, regional organ tissue radiotracer concentrations can be visualized and measured. Earlier studies from our laboratory have already demonstrated the feasibility of determining the radiotracer arterial input function and the tissue kinetics in myocardium, skeletal muscle, and brain in intact mice [7,8,9,10]. The purpose of the current study was to determine, if myocardial [18F]-fluorodeoxyglucose (FDG) kinetics in mice in a non-fasting condition or a fasting condition differ after injection of insulin and assess the effect on FDG kinetics in the muscle and brain. Knowledge of the extent of these changes will assist in planning future experiments for assessing glucose metabolism to help decide if kinetic modeling is necessary or which metabolic state would be the most suitable to answer the scientific question
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.