Abstract
The present study addresses the possible interacting effects of dietary n-6/n-3 polyunsaturated fatty acid (PUFA) balance and chronic ethanol intoxication on the synaptic membrane responses to ethanol and the development of tolerance in rats. Wistar rats were fed either a standard lab chow or various semi-synthetic diets: rich in PUFA (from soya oil: SO), deficient in linolenate (from sunflower oil: SFO) or rich in long-chain (n-3) PUFA (cod liver oil: CLO). Male adult rats from the second specially fed generation were submitted to a 3-week alcoholization by daily intubation. Functional tolerance was quantified by the hypothermic response to a challenge dose of ethanol. Synaptic fluidity and sensitivity to ethanol (variations after acute ethanol addition) were assessed by fluorescence polarization (FP) of DPH, TMA-DPH or PROP-DPH. Membrane fatty acid composition was determined by GLC. The fatty acid composition of the synaptic membranes was influenced by the diet, but rearrangements among the lipids occurred, resulting in an apparent stability in brain membrane fluidity parameters. Nevertheless, clear-cut differences were noted in response to ethanol intoxication according to the diet. In the same period of time, rats fed SFO or CLO diets were unable to develop tolerance to ethanol at the membrane level as well as functionally, contrarily to the rats fed SO or standard diets. The structurally specific roles of PUFA are suggested by the negative membrane effects of the alpha-linolenate deficient diet (SFO) and the positive ones of a diet (SO) rich and well balanced in (n-3 + n-6) PUFA. Furthermore, the n-6/n-3 PUFA balance in the synaptic membrane needs to be kept within very narrow limits to allow normal development of the adaptive response to ethanol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.