Abstract

The influence of diet on the distribution of carbon isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant carbon isotopic composition. The isotopic composition of the whole body of an animal reflects the isotopic composition of its diet, but the animal is on average enriched in δ 13C by about 1‰ relative to the diet. In three of the four cases examined, the 13C enrichment of the whole body relative to the diet is balanced by a 13C depletion of the respired CO 2. The isotopic relationships between the whole bodies of animals and their diets are similar for different species raised on the same diet and for the same species raised on different diets. However, the δ 13C values of whole bodies of individuals of a species raised on the same diet may differ by up to 2‰. The relationship between the 13C/ 12C ratio of a tissue and the 13C/ 12C ratio of the diet depends both on the type of tissue and on the nature of the diet. Many of the isotopic relationships among the major biochemical fractions, namely the lipid, carbohydrate and protein fractions, are qualitatively preserved as diet carbon is incorporated into the animal. However, the difference between the δ 13C values of a biochemical fraction in an animal and in its diet may be as large as 3‰. The δ 13C values of the biochemical components collagen, chitin and the insoluble organic fraction of shells, all of which are often preserved in fossil material, are related to the isotopic composition of the diet. These results indicate that it will be possible to perform dietary analysis based on the determination of the 13C/ 12C ratio of animal carbon. Analysis of the total animal carbon will in most cases provide a better measure of diet than the analysis of individual tissues, biochemical fractions, or biochemical components. The limits of accuracy of this method will generally restrict its application to situations in which the diet is derived from sources with relatively large differences in their δ 13C values, such as terrestrial vs aquatic organisms or C 3 vs C 4 plants. The method should be applicable to fossil as well as to living material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.