Abstract
Previous studies have demonstrated that bivalve molluscs respond to changing food conditions through processes such as preferential selection and ingestion of particulate matter. Little is known, however, about the underlying mechanisms accountable for these responses. To further explain feeding processes at the level of the pallial organs, we determined pallial cavity residence times, or the amount of time it took particles to travel from the inhalant aperture to the stomach, in two species of bivalves, Crassostrea virginica and Mytilus edulis, under conditions of differing particle quality, particle concentration, and temperature. From these residence times, particle-handling times on the labial palps were determined. Diets of three different qualities were tested, including Rhodomonas lens cells, particles prepared from ground Spartina sp. detritus, and a 50/50 mixture of both. Bivalves were delivered one of the three diets along with 10-μm fluorescent polystyrene beads (tracer), removed from feeding chambers at intervals from 30 s up to 20 min, and placed in liquid nitrogen to halt particle transport. Digestive systems of bivalves were then dissected and examined for the presence of tracer beads. Particle-residence times in the pallial cavity and handling times on the labial palps of C. virginica were significantly affected by changes in diet type. Particle-handling times on the palps decreased with increasing diet quality and ranged from 2.2 min (100% R. lens) to 22.8 min (100% ground Spartina sp.), accounting for 88% and 99%, respectively, of the total time particles spent in the pallial cavity. In contrast, diet quality had little effect on particle-residence times in the pallial cavity of M. edulis. However, residence times were affected by temperature and diet concentration. Temperature significantly affected residence times at particle concentrations of both 20 and 100 particles μl −1, whereas particle concentration affected residence times at 20 °C, but not at 5 °C. Particle-handling times on the labial palps ranged from less than 1 to 5.5 min, depending on temperature and concentration, accounting for 50% to 82%, respectively, of the total time particles spent in the pallial cavity. We suggest that (1) observed interspecific differences in particle handling on the labial palps may be due to differences in palp morphology and function, and (2) particle sorting and selection on the labial palps is a rate-limiting step of pre-ingestive feeding processes in by bivalves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Experimental Marine Biology and Ecology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.