Abstract

Dependent on automatically generated unstructured grids, a comprehensive computational fluid dynamics (CFD)numerical simulation is performed to analyze the influence of nozzle geometry on the internal flow characteristics of a multi-hole diesel injector with the multi-phase flow model based on Eulerian multi-fluid method. The diesel components in nozzle are considered as two continuous phases, diesel liquid and diesel vapor respectively. Considering that both of them are fully coupled and interpenetrated, separate sets of governing equations are established and solved for each phase. The geometric parameters mainly include the length and exit diameter of nozzle, the rounded radius at inlet of nozzle orifice and the angle between axis of injector and axis of nozzle orifice, and they are individually taken into account to analyze the impact on the cavitating flow in nozzle. The results show that the geometrical characteristics of nozzle have a strong influence on the volume fraction of diesel vapor in nozzle and the outlet flow velocity of injector. So cavitation in nozzle orifice should not be neglected for the in-cylinder fuel atomization process, especially for the primary break-up of liquid jet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.