Abstract

Effects of engine operating parameters and fuel composition on both primary soot particle diameter and particle number size distribution in the exhaust of a direct-injected heavy-duty diesel engine were studied in detail. An electrostatic sampler was developed to deposit particles directly on transmission electron microscopy (TEM) grids. Using TEM, the projected area equivalent diameter of primary soot particles was determined. A scanning mobility particle sizer (SMPS) was used for the measurement of the particle number size distribution. Variations in the main engine operating parameters (fuel injection system, air management, and fuel properties) were made to investigate soot formation and oxidation processes. Primary soot particle diameters determined by TEM measurements ranged from 17.5 to 32.5 nm for the diesel fuel and from 24.1 to 27.2 nm for the water-diesel emulsion fuel depending on the engine settings. For constant fuel energy flow rate, the primary particle size from the water-diesel emulsion fuel was slightly larger than that from the diesel fuel. A reduction in primary soot particle diameter was registered when increasing the fuel injection pressure (IP) or advancing the start of injection (SOI). Larger primary soot particle diameters were measured while the engine was operating with exhaust gas recirculation (EGR). Heat release rate analysis of the combustion process revealed that the primary soot particle diameter decreased when the maximum flame temperature increased for the diesel fuel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.