Abstract

We present the analysis of the impedance spectra for a binary electrolyte confined between blocking electrodes with dielectric layers. An expression for the impedance is derived from Poisson-Nernst-Planck equations in the linear approximation taking into account the voltage drop on the dielectric layer. The analysis shows that characteristic features of the frequency dependence of the impedance are determined by the ratio of the Debye length and the effective thickness of the dielectric layer. The impact of the dielectric layer is especially strong in the case of high concentrated electrolytes, where the Debye length is small and thus comparable to the effective thickness of the dielectric layer. To verify the model, measurements of the impedance spectra and transient currents in a liquid crystal 4-n-pentyl-4^{'}-cyanobiphenyl (5CB) confined between polymer-coated electrodes in cells of different thicknesses are performed. The estimates for the diffusion coefficient and ion concentration in 5CB obtained from the analysis of the impedance spectra and the transient currents are consistent and agree with previously reported data. We demonstrate that calculations of the ion parameters from the impedance spectra without taking into account the dielectric layer contribution lead in most cases to incorrect results. Application of the model to analyze violations of the low-frequency impedance scaling and contradictions in the estimates of the ion parameters recently found in some ionic electrolytes are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call