Abstract

The crack initiation load and fracture toughness were characterized as a function of diamond particle content, up to 25 vol%, in silicon oxycarbide glass matrix by means of Vickers indentation and single edge notch beam (SENB) technique, respectively. The larger fracture toughness value of 3.21 ± 0.3 MPa m1/2 was reached for 20 vol% diamond content composites and the value was 4 times higher than that of the unreinforced glass. The addition of diamond particles greatly influenced the crack initiation load, which increased from 2.9 to 49.0 N. The enhancement in the fracture toughness and crack initiation load can be explained by both the intrinsic mechanical properties of diamond (especially the elastic properties; E ∼ 1100 GPa) and the diamond/SiOC glass interfacial bonding. A clear correlation was found between the fracture energy, the reinforced interparticle spacing and the residual stress arising upon cooling due to thermal expansion mismatch between the matrix and the diamond particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.