Abstract

The influence of deuteration on the properties of lithium acetate dihydrate has been investigated by thermal expansion measurements, ultrasound spectroscopy and calorimetry. Inelastic X-ray scattering has been employed to investigate if the low temperature structural phase transition can be detected by a change in the vibrational spectrum. Density functional theory, DFT, calculations have been employed to complement the experimental investigations. The thermal expansion coefficients and the specific heat of the deuterated compound differ significantly from the protonated form. The differences in the elastic stiffness coefficients are just above the detection limit of the technique employed here. Temperature dependent inelastic X-ray spectroscopic measurements show no significant change of the vibrational spectrum when crossing the transition temperature. The DFT calculations show that the methyl group dynamics are best described in the framework of coupled rotators of opposing methyl groups. One of the coupled rotational modes corresponds to a hindered rotator with a barrier of 15 meV, while the other is a free rotator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.