Abstract

This paper presents variations in the workspace, singularities, and joint space with respect to design parameter k, which is the ratio of the dimensions of the mobile platform to the dimensions of the base of a 3-RPS parallel manipulator. The influence of the design parameters on parasitic motion, which is important when selecting a manipulator for a desired task, is also studied. The cylindrical algebraic decomposition method and Gröbner-based computations are used to model the workspace and joint space with parallel singularities in 2R1T (two rotational and one translational) and 3T (three translational) projection spaces, where the orientation of the mobile platform is represented using quaternions. These computations are useful in selecting the optimum value for the design parameter k such that the parasitic motions can be limited to specific values. Three designs of the 3-RPS parallel robot, based on different values of k, are analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call