Abstract

The transfer-free graphene transparent conducting electrode (TCE) is a promising alternative to indium tin oxide (ITO) for organic solar cells (OSCs). In the present work, a comprehensive investigation on how deposition temperature and H2 flow rates affect the growth, structural, optical, and electrical properties of graphene produced by RF plasma enhanced chemical vapor deposition using sustainable sources was conducted. Inverted-geometry OSCs with P3HT: PCBM photoactive layer were fabricated on transfer-free graphene TCEs developed under different conditions. Moreover, the coupling of silver nanowires (AgNWs) with different graphene films was studied for hybrid graphene-AgNWs TCEs for OSCs. Devices based on graphene TCEs prepared at low or zero H2 flow have shown better performances than those at high flow of H2. Similarly, graphene TCEs prepared at high temperature (>700 °C, on quartz) led to a deteriorated device performance due to the highly increased growth of vertically oriented graphene nanosheets, which dramatically reduced film transmittance and increased surface roughness. The present work provides solid understanding of the growth mechanism of RF-PECVD graphene on glass from a sustainable carbon source. More importantly, the sustainable, ecofriendly, cost- and time-effective production of scalable transfer-free graphene TCEs for OSCs is optimized which paves the way towards ITO-free optoelectronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call