Abstract

Austenitic stainless steels are often used for components in demanding environment. These materials can withstand elevated temperatures and corrosive atmosphere like in energy producing power plants. They can be plastically deformed at slow strain rates and high alternating or constant tensile loads such as fatigue and creep at elevated temperatures. This study investigates how deformation rates influence mechanical properties of an austenitic stainless steel. The investigation includes tensile testing using strain rates of 2*10-3/ and 10-6/s at elevated temperatures up to 700°C. The material used in this study is AISI 316L. When the temperature is increasing the strength decreases. At a slow strain rate and elevated temperature the stress level decreases gradually with increasing plastic deformation probably due to dynamic recovery and dynamic recrystallization. However, with increasing strain rate elongation to failure is decreasing. AISI 316L show larger elongation to failure when using a strain rate of 10-6/s compared with 2*10-3/s at each temperature. Electron channelling contrast imaging is used to characterize the microstructure and discuss features in the microstructure related to changes in mechanical properties. Dynamic recrystallization has been observed and is related to damage and cavity initiation and propagation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call