Abstract

The present work deals with the influence of deformation and molybdenum content on the subsequent austenite-to-acicular ferrite transformation during continuous cooling in medium carbon microalloyed steels. The results obtained demonstrate that higher deformation temperature induces a finer austenite grain size as a result of austenite recrystallisation processes during cooling down to austenite decomposition temperature. The higher the molybdenum content and severity of deformation are, the finer austenite grain is. Likewise, it was concluded that molybdenum suppress pearlitic microstructure, and clearly delay proeutectoid ferrite field to longer times. By contrast, acicular ferrite transformation is enhanced in molybdenum rich steel, which not only affect the volume fraction but also the morphology of acicular ferrite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.