Abstract

AbstractDeep cryogenic treatment in combination with classic heat treatment shows a significant improvement in wear resistance of high speed steel tools. The aim of this research was to investigate how the microstructure of the substrate tool steel material, which was altered by deep cryogenic treatment and plasma nitriding, influences the properties of TiAlN coating. The microstructure, topography and composition of the TiAlN coating were investigated using field‐emission scanning electron microscope, atomic force microscopy, XRD, and glow discharge optical emission spectroscopy. The coating adhesion was measured using the scratch test. The sliding wear resistance and the force required to break the coating were determined with the ball‐on‐flat method. Resistance to microabrasion was measured by free ball abrasion test. The results show that deep cryogenic treatment combined with plasma nitriding influence the adhesion of the TiAlN coating to the high speed steel substrate. Wear resistance tests show better wear resistance of deep cryogenic treated samples in comparison with conventionally heat treated ones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call