Abstract
Urban building energy models become increasingly important to estimate the dynamic heat demand of building groups, when planning energy saving measures. Archetype solutions can help to reduce the necessary data to model buildings in the urban context. Nevertheless, additional data and Bayesian calibration can be used to reduce the uncertainty in estimated parameter values. We model and calibrate three office buildings in Germany with different information levels using one year of hourly measurements. Starting with an archetype building energy model (BEM), the facade area and orientation, the window share, the physical properties, and the heating times are specified gradually before calibrating. The calibrated models are evaluated in CV(RMSE) and R2 and put in the context of ASHRAE Guideline 14 [1]. The calibration results with more specified parameters in the initial BEM are absorbing less error, because of the eliminated uncertainty before the calibration. Furthermore, the calibration of the most advanced BEM is performed with different periods of real measurement data. The calibrated BEMs indicate a similar data fit for calibrations with three months of measurement data from quarter 1, 2, and 4 of the year and with semi-annual measurement data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.