Abstract
The evolution of myelofibrosis accompanying chronic myeloproliferative disorders (CMPDs) is often linked with megakaryopoiesis. However, it is not known whether or to what extent megakaryocytes of normal human bone marrow are capable of stimulating fibroblast growth. For this reason, an in vitro study was performed to elucidate possible cytokine-dependent interactions between megakaryocytes and fibroblasts derived from healthy volunteers. Fibroblast growth was significantly promoted by the presence of megakaryocytes and modulated by additional application of various cytokines. While recombinant human (rh) interleukin (IL)-1 alpha had no obvious effect on fibroblast proliferation, a slight increase was detected on adding granulocyte-macrophage colony stimulating factor (rhGM-CSF). Application of rhIL-3 caused a significant increase in the number of fibroblasts. In contrast, administration of rhIL-11 suppressed the megakaryocyte-dependent growth-promoting effect and co-stimulation with rhIL-3 led to a significant decrease of fibroblast number in comparison to rhIL-3-stimulated co-cultures. Inhibition of cell-cell contact in unstimulated, as well as in rhIL-3-stimulated co-cultured led to a conspicuous impairment of fibroblast growth. A similar effect was observed when neutralizing antibodies directed against platelet-derived growth factor (PDGF) and transforming growth factor (TGF)beta 1 were added to rhIL-3-stimulated cultures. Our findings are in keeping with the assumption that interactions between megakaryocytes and fibroblasts involve in cytokine-mediated functional network regulated by factors such as spatial relationship, cytokine stimulation, and low concentrations of mediators, particularly PDGF and TGF beta. In this complex system rhIL-3 seems to play a crucial role in the promotion of these various interrelationships.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.