Abstract
In the present work, the effect of the cylindrical configurations of the sputtering device electrodes on the plasma parameters (Debye length, electron temperature, electron density, plasma frequency) is studied. Also, the effect of the argon gas pressure on the discharge properties is examined with gas pressures of (0.08, 0.2, 0.4 and 0.6) Torr. The properties of the plasma are diagnosed by optical emission spectrometry. The spectroscopic method is adopted for examining the atomic spectra of argon emission. The electron temperature is determined by the Boltzmann method. While, the Stark-widening method was employed for calculating the electron number density. The voltage against current curves of the cylindrical sprayer discharges shows the voltage to be nearly constant with slight increase in current. An increase in pressure causes the cathode cascades to compress and the negative glow to become thinner and more luminous. Plasma properties such as electron temperature and Debye length decrease with increasing pressure, while electron number density and plasma frequency increase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.