Abstract

Austenitic stainless steels generally display poor tribological properties in sliding contacts partly due to their strong adhesion and transfer tendency to the counter surface. As a result machining of austenitic stainless steels is frequently associated with significant problems such as high stresses and high temperatures resulting in rapid tool wear. In the present study, the influence of coating micro topography on the initial material transfer of 316L stainless steel in sliding contacts has been evaluated using a scratch testing equipment. Coating materials include modern CVD Ti(C,N)-Al2O3-TiN and PVD (Ti,Al)N-(Al,Cr2)O3 coatings deposited on cemented carbide and pre- and post-coating grinding and polishing treatments were used to obtain different micro topographies of the coating surface. Pre- and post-test characterization of the surfaces was performed using high resolution scanning electron microscopy, energy dispersive X-ray spectroscopy and optical surface profilometry.The results show that the intrinsic topography of the as-deposited CVD and PVD coatings promotes material transfer. For the as-deposited CVD coating the nanoscale topography of the crystals controls the transfer while for the PVD coating the µm-scale droplets and craters control the transfer. Post-polishing of the coating, especially in combination with pre-polishing of the substrate, significantly improves the tribological performance of the surface reducing the friction coefficient and the material transfer tendency. However, the presence of µm sized droplets and craters in the PVD coating limit the possibility to obtain a smooth post-polished surface and its resistance to material pick-up. In contrast, post-polishing of the CVD coating does not suffer from intrinsic coating defects which results in low friction and a very high resistance to material pick-up.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call