Abstract

Especially copper-zinc alloys (CuZn) with good machining properties are used for electrical components and fittings. By using copper alloys with lead content of 1 % ≤ Pb ≤ 3 % an improved chip breakage can be achieved. Legal regulations require the reduction of lead and demand further knowledge about the effect of the material properties in interaction with the used micro-milling tools. In this contribution the cutting conditions of copper as well as four copper alloys were examined. The results show considerable differences in the resultant surface roughness and burr formation. Furthermore, the influence of two different tool geometries and variied cutting edge micro-geometries were investigated while machining CuZn21Si3P. Thereby, tools with increased cutting edge radii rβ showed increased active forces Fa, burr height h0 and decreased surface roughness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.