Abstract

In this paper, a novel model combining the microstructure prediction model and a modified constitutive model of the Johnson-Cook (JC) model was developed and embedded into FEM software via the user subroutine. The chip formation and microstructure evolution in high speed cutting of Ti-6Al-4V alloy were simulated. The results indicated that dynamic recrystallization mainly happened in adiabatic shear bands (ASBs), where the grain size had a big decline. Then FEM simulations were carried out to investigate the effect of cutting velocity, uncut chip thickness, and the rake angle on the ASBs width of the serrated chips. It can be concluded that the width of ASB increases with the increasing of cutting depth and cutting velocity, and decreases with the increasing of rake angle of the tool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.