Abstract

Gait is one of the most common and important factor of human movements in daily life. Pelvis is closely connected with the gait due to it allows maintain stable posture by supporting the spine and lower extremities against the gravity. Therefore, pelvic asymmetry, which is caused by biomechanical stress and muscle imbalance, has been associated with postural imbalance and abnormal walking pattern. The purpose of this study was to manufacture customized foot orthotics for improving gait balance and evaluate the effectiveness of customized foot orthotics during walking by measuring lower extremity muscle activity and plantar pressure distribution. All subjects with pelvic asymmetry were asked to walk on a treadmill under three conditions: walking without foot orthotics, walking with customized foot orthotics and walking with non-customized foot orthotics. Root mean square (RMS) value of the electromyography signals, force and peak pressure of the plantar pressure distribution was analyzed based on the gait cycle. The results showed that excessive tension of the muscles and high pressure of the foot that was induced by pelvic asymmetry were more reduced when walking with custom-made foot orthotics than walking without foot orthotics and walking with non-customized foot orthotics. This paper suggest that custom-made orthotics for patients with pelvic asymmetry could be helpful to relieve the excessive loading of the foot and maintain balanced gait pattern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.