Abstract

Poly(vinyl alcohol)/copper oxide/graphene nanoplatelets (PVA/CuO/Gr-NPls) nanocomposite based chemiresistive alcohol sensors were fabricated using colloidal blending method. The PVA/CuO/Gr-NPls nanocomposite films were characterized using Fourier transform infrared spectroscopy, X-ray diffraction, UV–Vis spectroscopy, thermogravimetric analysis, scanning electron microscopy, atomic force microscopy and the sensing behaviour of PVA/CuO/Gr-NPls nanocomposite films was evaluated for volatile organic compounds (VOCs). The improvement in the thermal, mechanical and VOCs sensing properties of nanocomposite film was observed attributing to the homogeneity of the nanocomposites and strong interfacial interaction between Gr-NPls, CuO and PVA matrix. The sensors were analyzed in the concentration range from 1800 to 4000 ppm. It was observed that PVA/CuO/Gr-NPls nanocomposite film exhibited excellent propanol sensing at a room temperature, typically at an applied voltage of 10 V when compared with other VOCs. Thus, the strong interaction between CuO and Gr-NPls helps in achieving excellent reinforcement effect in a PVA matrix for fabrication of high performance nanocomposite films for VOC’s sensing applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call