Abstract
Streambed scour in cohesive sediment is complex because erosion processes depend on the physical, geochemical, and biological properties of the sediment. The scouring processes can also be characterized as a slow fatigue phenomenon. Therefore, repetitive hydraulic loadings from multiple stormflow events are likely necessary for equilibrium scour depths to develop in cohesive sediment compared with non-cohesive sediment. Cumulative effective stream power, which is a surrogate measure of effective stream power duration, showed a significant relation with scour development and propagation in cohesive sediments around bridge piers, where results from this study identified a statistically significant correlation between cumulative effective stream power and the observed scour depths around different bridge piers ( R2 = 0.56, p < 0.001). However, some localized and site-specific variations were observed. It was also observed that scour depth development in cohesive soil appeared to be dependent on effective shear duration, rather than the number of flow events above erosion threshold values. In addition, the relationship between an erodibility index ( K) and critical stream power showed a significant statistical correlation ( R2 = 0.61, p = 0.017). Results from this study deviated from the Annandale empirical relationship for sediments when K < 0.1. This finding supports that site-specific critical stream power should be measured using an empirical relationship for cohesive bed sediments to predict scour depths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.