Abstract

A novel one-step synthesis process was used to prepare CdTe:Cu2+/TiO2 nanotube arrays (TNTAs). X-ray powder diffraction and high-resolution transmission electron microscopy analyses confirmed that the obtained CdTe:Cu2+ quantum dots (QDs) possess cubic structures, which are approximately spherical, and a small particle size (2.95nm). The photoluminescent and UV–visible absorption spectra of CdTe:Cu2+ QDs also display an obvious redshift, which was attributed to the replacement of Cd2+ with Cu2+. Compared with that of the TNTAs and CdTe/TNTAs, the photoelectric conversion efficiency of CdTe:5% Cu2+/TNTAs increased by 785.7% and 103.3%, respectively. The incident photo-to-current conversion efficiency of CdTe:5% Cu2+/TNTAs was 50.6%, which indicated the potential use of QDs in photochemical solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.