Abstract

Background: Interstitial lung disease (ILD) is a frequent complication of systemic sclerosis (SSc), and its early detection and treatment may prevent deterioration of lung function. Different vendors have recently made larger image matrices available as a post-processing option for computed tomography (CT), which could facilitate the diagnosis of SSc-ILD. Therefore, the objective of this study was to assess the effect of matrix size on lung image quality in patients with SSc by comparing a 1024-pixel matrix to a standard 512-pixel matrix and applying different reconstruction kernels. Methods: Lung scans of 50 patients (mean age 54 years, range 23–85 years) with SSc were reconstructed with these two different matrix sizes, after determining the most appropriate kernel in a first step. Four observers scored the images on a five-point Likert scale regarding image quality and detectability of clinically relevant findings. Results: Among the eight tested kernels, the Br59-kernel (sharp) reached the highest score (19.48 ± 3.99), although differences did not reach statistical significance. The 1024-pixel matrix scored higher than the 512-pixel matrix HRCT overall (p = 0.01) and in the subcategories sharpness (p < 0.01), depiction of bronchiole (p < 0.01) and overall image impression (p < 0.01), and lower for the detection of ground-glass opacities (GGO) (p = 0.04). No significant differences were found for detection of extent of reticulations/bronchiectasis/fibrosis (p = 0.50) and image noise (p = 0.09). Conclusions: Our results show that with the use of a sharp kernel, the 1024-pixel matrix HRCT, provides a slightly better subjective image quality in terms of assessing interstitial lung changes, whereby GGO are more visible on the 512-pixel matrix. However, it remains to be answered to what extent this is related to the improved representation of the smallest structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call