Abstract

Due to the anisotropy of the modulus of face-centered cubic cells, the nickel-based single crystal alloys exhibits substantial anisotropy at high temperatures. Their creep properties, especially the creep rupture lives, are related to the actuation of the slip system and the magnitude of the shear stress on the slip plane. The creep orientation sensitivity has been analyzed through creep experiments, as well as the microstructure and morphology of the fracture. On the macroscale, the necking sections of [001], [011] and [111] orientations are circular, elliptical and circular, respectively. Meanwhile, on the microscopic scale, the damage evolution caused by the expansion of the internal micropores in the single crystal alloy under the three orientations shows fourfold symmetry, double symmetry and triple symmetry, respectively. Based on the crystal plasticity theory, an anisotropic creep constitutive model and damage model are established to reflect the difference in creep deformation and damage evolution caused by orientation. The numerical simulations of the whole creep process of a second generation nickel-based single crystal superalloy show that the creep constitutive model and damage model can simulate the deformation and damage of the specimen under different orientations, and the creep life can be obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.