Abstract
The room-temperature magnetic susceptibility anisotropy of eight-coordinate lanthanide ions was modelled numerically for polyhedra resulting from distortions of the regular cube to a tetragonal prism, antiprism, and dodecahedron. Our aim is to illustrate how the magnitude and sign of the room-temperature magnetic anisotropy can be related to the shape of the coordination polyhedron and to estimate its maximum value. Tb(III), Dy(III), and Tm(III) ions are found to have the largest values of the magnetic anisotropy in all coordination polyhedra. These results are helpful to rationalize the orientational behavior of lanthanide-containing liquid crystals in an external magnetic field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.