Abstract

The compositions and phase conditions of water-hydrocarbon fluids in synthetic quartz inclusions were studied by the methods of microthermometry, local IR spectroscopy, and gas-liquid chromatography. Synthetic quartz was grown in near-neutral fluoride, low-alkali bicarbonate, and alkali carbonate solutions with crude oil and its major fractions. The crystals with fluid inclusions were grown under thermal gradient conditions at relatively low temperatures (240–280°C) and pressures (6–45 MPa). After the study, the inclusions of grown crystals were subject to thermal processing in autoclaves at 350–380°C and 80–125 MPa. As a result, the initial water-hydrocarbon inclusions underwent significant changes. Hydrocarbon gases, largely methane and residual solid bitumens, appeared in their composition; the gasoline-kerosene fraction content increased substantially in liquid hydrocarbons (HCs). These changes are caused, first of all, by crude oil cracking, which is manifested already at 330°C and attains its maximum activity at 350–500°C (pressure of saturated vapor and higher). In natural conditions with increase in depths and, thus, the thermobaric parameters, this process is inevitable. According to the obtained experimental data, this very phenomenon and the existence of real thermal and baric gradients in the Earth’s interior provide for the formation of vertical zoning in the distribution of hydrocarbon deposits of different types.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.