Abstract

Abstract— A series of crack growth experiments has been preformed on the near alpha titanium alloy, Ti‐1100, to determine the mechanism of the creep‐fatigue interaction. Based on pure creep crack growth results, the increase in the creep‐fatigue crack growth rate is not amenable to separate contributions of creep crack growth and fatigue crack growth.A mechanism has been proposed to account for the increase in creep‐fatigue crack growth rate that is based on the planar slip of titanium alloys which results in the formation of dislocation pileups at the prior beta grain boundaries and leads to intergranular fracture. This mechanism has been validated through crack growth experiments preformed on a Ti‐1100 that has been microstructurally modified through the precipitation of internal slip barriers. These show that the intergranular fracture and increase in crack growth rate are absent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.