Abstract

CHEMICAL and biological processes have important roles in the transport and cycling of trace elements in natural waters1-3, but their complex interactions are often not well understood. Trace-element concentrations may, for example, be controlled by adsorption—desorption reactions at mineral surfaces, with the equilibrium strongly influenced by pH. Variations in pH due to photosynthetic activity should result in concentration fluctuations as the adsorption—desorption equilibrium shifts with pH. To investigate these interactions, we have studied the effect of diurnal cycling of pH on dissolved arsenate in a perennial stream contaminated with arsenic. As expected, a diurnal cycle in arsenate concentration was observed, but surprisingly, the arsenate cycle lags several hours behind the pH cycle. Laboratory experiments show that the lag results from a slow approach to sorption equilibrium. Our observations demonstrate that the coupling of photosynthesis and sorption processes may have an important influence on the cycling of many trace elements and emphasize the importance of understanding sorption kinetics in modelling these processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.