Abstract

The capacity of cortisol, ovine growth hormone (oGH), recombinant bovine insulin-like growth factor I (rbIGF-I) and 3,3′,5-triiodo-l-thyronine (T3) to increase hypoosmoregulatory capacity in the euryhaline teleost Fundulus heteroclitus was examined. Fish acclimated to brackish water (BW, 10 ppt salinity) were injected with a single dose of hormone suspended in oil and transferred to seawater (SW, 35 ppt salinity) 10 days post-injection. Fish were sampled 24 h after transfer and plasma osmolality and gill Na+, K+-ATPase activity were examined. Transfer from BW to SW induced significantly increased plasma osmolality but not gill Na+, K+-ATPase activity. Cortisol (50 μg g−1 body weight) improved the ability to maintain plasma osmolality and to increase gill Na+, K+-ATPase activity. oGH (5 μg g−1 body weight) also increased hypoosmoregulatory ability and gill Na+, K+-ATPase activity. A cooperation between oGH and cortisol was observed in increasing hypoosmoregulatory ability but not in increasing gill Na+, K+-ATPase activity. rbIGF-I (0.5 μg g−1 body weight) alone was without effect in increasing salinity tolerance or gill Na+, K+-ATPase activity. rbIGF-I and oGH showed a positive interaction in increasing salinity tolerance, but not gill Na+, K+-ATPase activity. Treatment with T3 (5 μg g−1 body weight) alone did not increase salinity tolerance or gill Na+, K+-ATPase activity, and there was no consistent significant interaction between cortisol and T3 or between GH and T3. The results confirm the classical role of cortisol as a seawater-adapting hormone and indicate an interaction between cortisol and the GH/IGF-I axis during seawater acclimation of Fundulus heteroclitus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.