Abstract

AbstractThe effect of corona treatment (CT) on the adhesion at the metal–polymer interface was studied. Metal/polymer/metal laminates were manufactured by the laboratory roll‐bonding process with preliminary corona surface treatment of the polymer core: a polyethylene and polypropylene sheet as well as steel sheet. It was treated with corona discharge to increase its surface energy and the adhesion to metal, an austenitic steel. The adhesion, which was measured by T‐peel and shear tests, was increased by 43% of crack peel and 22% of mean peel resistance respectively, after 120 s CT. On the basis of scanning electron spectroscopy observations, improvements in the adhesive properties were attributed to the change in the interfacial morphology. In mechanical tests, yield and tensile strengths were strongly influenced by CT, indicating that these laminates were sensitive to interfacial phenomena. However, elongation at rupture of the composites was found to be unchanged. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call