Abstract

The near wake flow field features of transversely oscillating square section cylinders with different corner radii were studied in an attempt to assess the influence of corner radius. The investigation was performed by using particle image velocimetry (PIV) technique in a water channel with a turbulence intensity of 6.5%. Five models were studied with r/B=0, 0.1, 0.2, 0.3 and 0.5 (r is the corner radius and B is the characteristic dimension of the body), and the body oscillation was limited to lock-in condition (at fe/fo=1.0; fe is the excitation frequency and fo is the vortex shedding frequency from a stationary cylinder at the same Re). The corner radius was found to significantly influence the flow features around the bodies. Except for r/B=0.5, for all the other cases of r/B ratios, cycle-to cycle variation in the mode of vortex shedding was observed in the case of oscillating cylinders inducing highly non-linear wake characteristics. Apart from variation in the shedding mode, changes in shedding cycle timing were also observed for sharp and rounded square cylinders. The hgher the r/B ratio, shedding in the near wake was found to be more uniform (lesser variation in shedding cycle timings). Another admissible shedding mechanism is newly identified to operate in the near wake of oscillating cylinders now being called as the ‘passive shedding’ mechanism. Results indicate that increasing the corner radius suppresses the possible instabilities of the cylinder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call