Abstract

Failure to autoresuscitate by hypoxic gasping during prolonged sleep apnea has been suggested to play a role in sudden infant death. Furthermore, thermal stress brought about by a contribution of infection, overwrapping, or excessive environmental heating has been shown to be associated with an increased risk of sudden infant death, particularly in prone sleeping infants. The present experiments were carried out on newborn rat pups to investigate the influence of "forced" changes in core temperature on their time to last gasp during a single hypoxic exposure and on their ability to autoresuscitate during repeated exposure to hypoxia. On day 5 or 6 postpartum the pups were placed in a temperature-controlled chamber regulated to 33, 35, 37, 39, or 41 degrees C and exposed to a single period of hypoxia (97% N(2)-3% CO(2)) and their time to last gasp was determined, or they were exposed repeatedly to hypoxia and their ability to autoresuscitate from primary apnea was determined. Increases in core temperature brought about by changes in ambient temperature from 33 to 41 degrees C decreased the time to last gasp after a single hypoxic exposure and decreased the number of successful autoresuscitations after repeated hypoxic exposures. Thus our data support the hypothesis that forced changes in core temperature brought about by changes in ambient temperature influence protective responses in newborns that may prevent death during hypoxia, as may occur during single or repeated episodes of prolonged sleep apnea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call