Abstract
The hemagglutinin (HA) gene of novel Swine Origin Influenza A/California/04/2009 (H1N1) was engineered for expression in Pichia pastoris as a soluble secreted protein. The full length HA-synthetic gene having α secretory tag under the control of AOX1 promoter was integrated into P. pastoris genome through homologous recombination. The resultant Pichia clones having single and multiple copy integrants of the expression cassettes were screened for the expression of full length HA protein in the culture supernatant. In order to completely exploit the expression potential of the P. pastoris expression system, a systematic investigation on the influence of gene copy number on the expression of the recombinant protein was made. A panel of Pichia clones carrying increasing copies of the heterologous gene was selected based on Geneticin resistance and SYBR green-based quantitative real-time PCR approach. Using these strategies, recombinant Pichia transformants carrying up to a maximum of four to six copies of the transgene were identified. After optimising the expression conditions for shaker flask culture, the resultant clones demonstrated that the increase in copy number results in a proportional elevation in the expression level of H1N1HA recombinant protein. Our findings clearly suggest that the gene dosage effect play a vital role in high level expression of the pandemic Influenza HA protein in yeast system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.