Abstract

The Berkeley Pit lake in Butte, Montana, formed by flooding of an open-pit copper mine, is one of the world's largest accumulations of acidic, metal-rich water. Between 2003 and 2012, approximately 2 × 10(11) L of pit water, representing 1.3 lake volumes, were pumped from the bottom of the lake to a copper recovery plant, where dissolved Cu(2+) was precipitated on scrap iron, releasing Fe(2+) back to solution and thence back to the pit. Artificial mixing caused by this continuous pumping changed the lake from a meromictic to holomictic state, induced oxidation of dissolved Fe(2+), and caused subsequent precipitation of more than 2 × 10(8) kg of secondary ferric compounds, mainly schwertmannite and jarosite, which settled to the bottom of the lake. A large mass of As, P, and sulfate was also lost from solution. These unforeseen changes in chemistry resulted in a roughly 25-30% reduction in the lake's calculated and measured total acidity, which represents a significant potential savings in the cost of lime treatment, which is not expected to commence until 2023. Future monitoring is needed to verify that schwertmannite and jarosite in the pit sediment do not convert to goethite, a process which would release stored acidity back to the water column.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.