Abstract
The influence of copper on the ability of the intertidal sea anemone Bunodosoma cangicum to cope with reactive oxygen species generation associated with changes in oxygen availability was evaluated. Sea anemones were kept under control condition or pre-exposed (96h) to dissolved copper (6.1μg±2.7μg/L) and then subjected to a 6-h period of hypoxia (0.5mg O2/L) followed by a 6-h period of re-oxygenation (7.5mg O2/L). Antioxidant capacity against peroxyl radicals (ACAP), superoxide dismutase (SOD) activity, reduced glutathione (GSH) concentration, lipid peroxidation (LPO) level, and ATP concentration were evaluated. Control sea anemones showed variations in SOD and LPO while copper pre-exposed sea anemones displayed changes in ACAP, GSH, LPO and ATP. However, no clear pattern of change over time was observed. ACAP was lower in copper pre-exposed sea anemones than in the control ones during hypoxia and recovery. SOD activity was increased during hypoxia and reduced shortly after recovery in control sea anemones. GSH concentration was higher in copper pre-exposed sea anemones than in the control ones in all experimental conditions. The LPO level increased shortly after recovery in both groups of sea anemones, being higher in control sea anemones than in copper pre-exposed ones. ATP concentration showed transient changes in copper pre-exposed sea anemones, being lower in these sea anemones than in control ones during recovery. These findings suggest that B. cangicum possess mechanisms to prevent oxidative stress generated by changes in oxygen availability associated with the tidal cycle, which can be disturbed by pre-exposure to copper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.