Abstract
The influence of cooling rate and chemical composition on phase transformation and hardness of C70S6 steel were studied by Gleeble-3800 thermal simulation testing machine and box type electric furnace. The results showed that when the cooling rate was between 0.3 and 5 °C/s, the transformation products of two experimental steels were mainly composed of ferrites, pearlite and sorbite. The pearlite content gradually decreased with the cooling rate increasing, while the sorbite content increased and the ferrite content changed little. Both the ferrite and pearlite transformation starting temperature and ending temperature decreased with the cooling rate increasing. Besides, the hardness increased with the cooling rate. At the same cooling rate, the phase transformation temperature increased slightly with the carbon equivalent decreasing, and the pearlite content increased, while the hardness decreased. The hardness of C70S6 steel was reduced by cooling rate decreasing. However, it was difficult to realize the method of decreasing the hardness by adjusting the cooling rate in the case of higher carbon equivalent. Therefore, in order to obtain an appropriate hardness, the Ceq must be controlled. And a Ceq=0.83% was recommended.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.