Abstract

In this study, a numerical prediction of temperature profiles in a thin wire exposed to convective, radiative and temperature-dependent thermal conductivity is carried out using a finite-difference linearization approach. The procedure involves a numerical solution of a one-dimensional nonlinear unsteady heat transfer equation with specified boundary and initial conditions. The resulting system of nonlinear equations is solved with the Newton-Raphson’s technique. However unlike the traditional approach involving an initial discretization in space then in time, a different numerical paradigm involving an Euler scheme temporal discretization is applied followed by a spatial discretization. Appropriate numerical technique involving partial derivatives are devised to handle a squared gradient nonlinear term which plays a key role in the formulation of the Jacobian matrix. Tests on the numerical results obtained herein confirm the validity of the formulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.