Abstract

The purpose of the present work was to study how chemical reactions and the electronic structure of atoms are affected by confinement at the sub-nanometer scale. To reach this goal, we studied the H atom in talc, a layered clay mineral. Talc is a highly 2D-confining material with the width of its interlayer space close to angstrom. We investigated talc with a particle accelerator-based spectroscopic method that uses elementary particles. This technique generates an exotic atom, muonium (Mu), which can be considered as an isotope of the H atom. Moreover, the technique allows us to probe a single atom (H atom) at any time and explore the effects of the layered clay on a single ion (proton) or atom. The cation/electron recombination happens in two time windows: one faster than a nanosecond and the other one at longer than microseconds. This result suggests that two types of electron transfer processes take place in these clay minerals. Calculations demonstrated that the interlayer space acts as a catalytic surface and is the primary location of cation/electron recombination in talc. Moreover, the studies of the temperature dependence of Mu decay rates, due to the formation of the surrogate of H2, is suggestive of an “H2” formation reaction that is thermally activated above 25 K, but governed by quantum diffusion below 25 K. The experimental and computational studies of the hyperfine coupling constant of Mu suggest that it is formed in the interlayer space of talc and that its electronic structure is extremely changed due to confinement. All these results imply that the chemistry could be strongly affected by confinement in the interlayer space of clays.

Highlights

  • The purpose of the present work was to study how chemical reactions and the electronic structure of atoms are affected by confinement at the sub-nanometer scale

  • We address some unanswered questions related to confinement at its smallest level: How are chemical reactions affected by the combination of surface and confinement effects at the angstrom scale? How does the electronic structure change under angstrom-scale confinement? What is the effect of extreme confinement on the reactivity induced by ionizing radiation?

  • The knowledge of the electronic structure can be obtained via the determination of the hyperfine coupling constant (HFCC) of the trapped Mu (H) atom

Read more

Summary

Introduction

The purpose of the present work was to study how chemical reactions and the electronic structure of atoms are affected by confinement at the sub-nanometer scale. To reach this goal, we studied the H atom in talc, a layered clay mineral. The experimental and computational studies of the hyperfine coupling constant of Mu suggest that it is formed in the interlayer space of talc and that its electronic structure is extremely changed due to confinement. All these results imply that the chemistry could be strongly affected by confinement in the interlayer space of clays.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call