Abstract

AbstractThe spatio-temporal development of an incompressible two-dimensional viscous wake flow confined by two flat slipping plates is investigated by means of direct numerical simulation (DNS), using a spectral Chebyshev multi-domain method. The limit between unstable and stable configurations is determined with respect to several non-dimensional parameters: the confinement, the velocity ratio and two different Reynolds numbers, $100$ and $500$. The comparison of such limit curves with theoretical results obtained by Juniper (J. Fluid Mech., vol. 565, 2006, pp. 171–195) confirms the existence of a region at moderate confinement where the instability is maximal. Moreover, instabilities are also observed under sustained co-flow, in the form of a vacillating front. Using a direct computation of the two-dimensional base flow, we perform a local linear stability analysis for several velocity profiles prevailing at different spatial locations, so as to determine the local spatio-temporal nature of the flow: convectively unstable or absolutely unstable. Comparisons of the DNS and local stability analysis results are provided and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.